Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Med Genet A ; 191(6): 1565-1569, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36810952

RESUMEN

Baraitser-Winter syndrome (BRWS) is a rare autosomal dominant disease (AD) caused by heterozygous variants in ACTB (BRWS1) or ACTG1 (BRWS2) genes. BRWS features developmental delay/intellectual disability of variable degree and craniofacial dysmorphisms. Brain abnormalities (especially pachygyria), microcephaly, epilepsy, as well as hearing impairment, cardiovascular and genitourinary abnormalities may be present. We report on a 4-year-old female, who was addressed to our institution because of psychomotor delay associated with microcephaly and dysmorphic features, short stature, mild bilateral sensorineural hearing loss, mild cardiac septal hypertrophy, and abdominal swelling. Clinical exome sequencing detected a c.617G>A p.(Arg206Gln) de novo variant in ACTG1 gene. Such variant has been previously reported in association with a form of AD nonsyndromic sensorineural progressive hearing loss and we classified it as likely pathogenic according to ACMG/AMP criteria, despite our patient's phenotype only partially overlapped BWRS2. Our finding supports the extreme variability of the ACTG1-related disorders, ranging from classical BRWS2 to nuanced clinical expressions not fitting the original description, and occasionally featuring previously undescribed clinical findings.


Asunto(s)
Anomalías Múltiples , Epilepsia , Discapacidad Intelectual , Lisencefalia , Microcefalia , Malformaciones del Sistema Nervioso , Femenino , Humanos , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Actinas/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Mutación Missense , Fenotipo , Preescolar
2.
Artículo en Inglés | MEDLINE | ID: mdl-36847436

RESUMEN

Spontaneous coronary artery dissection (SCAD) accounts for 1-4% of all acute coronary syndromes (ACS). Since the first description in 1931, our understanding of the disease has evolved; however, its pathophysiology and management are still a matter of debate. SCAD typically occurs in a middle-aged woman with no or few traditional cardiovascular risk factors. Two hypotheses have been proposed to explain the pathophysiology depending on the primary event: an intimal tear in the "inside-out" hypothesis and a spontaneous hemorrhage from the vasa vasorum in the "outside-in" hypothesis. Etiology appears to be multifactorial: different predisposing and precipitating factors have been identified. Coronary angiography is the gold standard for the diagnosis of SCAD. Current recommendations on the treatment of SCAD patients are based on expert opinions: a conservative strategy is preferred in hemodynamically stable SCAD patients, while urgent revascularization should be considered in hemodynamically unstable patients. Eleven cases of SCAD in COVID-19 patients have already been described: although the exact pathophysiological mechanism remains unclear, COVID-19-related SCAD is considered a combination of significant systemic inflammatory response and localized vascular inflammation. We present a literature review of SCAD, and we report an unpublished case of SCAD in a COVID-19 patient.

3.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768812

RESUMEN

Variants in desmoplakin gene (DSP MIM *125647) have been usually associated with Arrhythmogenic Cardiomyopathy (ACM), or Dilated Cardiomyopathy (DCM) inherited in an autosomal dominant manner. A cohort of 18 probands, characterized as heterozygotes for DSP variants by a target Next Generation Sequencing (NGS) cardiomyopathy panel, was analyzed. Cardiological, genetic data, and imaging features were retrospectively collected. A total of 16 DSP heterozygous pathogenic or likely pathogenic variants were identified, 75% (n = 12) truncating variants, n = 2 missense variants, n = 1 splicing variant, and n = 1 duplication variant. The mean age at diagnosis was 40.61 years (IQR 31-47.25), 61% of patients being asymptomatic (n = 11, New York Heart Association (NYHA) class I) and 39% mildly symptomatic (n = 7, NYHA class II). Notably, 39% of patients (n = 7) presented with a clinical history of presumed myocarditis episodes, characterized by chest pain, myocardial enzyme release, 12-lead electrocardiogram abnormalities with normal coronary arteries, which were recurrent in 57% of cases (n = 4). About half of the patients (55%, n = 10) presented with a varied degree of left ventricular enlargement (LVE), four showing biventricular involvement. Eleven patients (61%) underwent implantable cardioverter defibrillator (ICD) implantation, with a mean age of 46.81 years (IQR 36.00-64.00). Cardiac magnetic resonance imaging (CMRI) identified in all 18 patients a delayed enhancement (DE) area consistent with left ventricular (LV) myocardial fibrosis, with a larger localization and extent in patients presenting with recurrent episodes of myocardial injury. These clinical and genetic data confirm that DSP-related cardiomyopathy may represent a distinct clinical entity characterized by a high arrhythmic burden, variable degrees of LVE, Late Gadolinium Enhancement (LGE) with subepicardial distribution and episodes of myocarditis-like picture.


Asunto(s)
Cardiomiopatías , Miocarditis , Adulto , Humanos , Persona de Mediana Edad , Cardiomiopatías/etiología , Cardiomiopatías/genética , Medios de Contraste , Gadolinio , Hipertrofia Ventricular Izquierda , Estudios Retrospectivos
4.
Front Pediatr ; 10: 1055091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699297

RESUMEN

Over the last decades, Inborn Errors of Immunity (IEI) characterized by an immune dysregulatory picture, isolated or combined with infections, have been increasingly identified and referred as Primary Immune Regulatory Disorders (PIRD). PIRD diagnosis may be difficult due to heterogeneity of time onset, sequence of clinical manifestations and laboratory abnormalities. Moreover, the dissection of a PIRD vs. a secondary immunodeficiency (SID) might be a real challenge since the same indications for immunosuppressant treatments might represent per se a PIRD clinical expression. Here we report a female patient with a history of recurrent respiratory and urinary tract infections since early infancy and a diagnosis of Rheumatoid Arthritis in adulthood. After poor response to several biologicals she was treated with Rituximab and sent to immunology referral for a severe hypogammaglobulinemia. Clinical and immunological features matched a diagnosis of common variable immunodeficiency and when IgG replacement therapy and antibiotic prophylaxis were added a good infectious control was obtained. Next generation sequencing analysis has revealed a novel heterozygous VUS in the IKBKB gene (c.1465A > G; p.Ser489Gly). Functional analysis has shown a reduced capacity of B lymphocytes and CD4 positive T cells in inducing IκBα degradation, with negative impact on NF-kB pathway. Due to recurrent infections attributed to a common condition in childhood and to an exclusive autoimmunity-centered approach in adulthood, both diagnosis and suitable treatment strategies have suffered a significant delay. To reduce the diagnostic delay, pediatricians, general practitioners and specialists should be aware of IEI and the challenges to differentiate them from SID. Furthermore, genetic characterization and functional analysis may contribute to a personalized approach, in a perspective of targeted or semi-targeted therapy.

5.
J Clin Med ; 10(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34768595

RESUMEN

Dilated cardiomyopathy (DCM) refers to a spectrum of heterogeneous myocardial disorders characterized by ventricular dilation and depressed myocardial performance in the absence of hypertension, valvular, congenital, or ischemic heart disease. Mutations in LMNA gene, encoding for lamin A/C, account for 10% of familial DCM. LMNA-related cardiomyopathies are characterized by heterogeneous clinical manifestations that vary from a predominantly structural heart disease, mainly mild-to-moderate left ventricular (LV) dilatation associated or not with conduction system abnormalities, to highly pro-arrhythmic profiles where sudden cardiac death (SCD) occurs as the first manifestation of disease in an apparently normal heart. In the present study, we select, among 77 DCM families referred to our center for genetic counselling and molecular screening, 15 patient heterozygotes for LMNA variants. Segregation analysis in the relatives evidences other eight heterozygous patients. A genotype-phenotype correlation has been performed for symptomatic subjects. Lastly, we perform in vitro functional characterization of two novel LMNA variants using dermal fibroblasts obtained from three heterozygous patients, evidencing significant differences in terms of lamin expression and nuclear morphology. Due to the high risk of SCD that characterizes patients with lamin A/C cardiomyopathy, genetic testing for LMNA gene variants is highly recommended when there is suspicion of laminopathy.

6.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576040

RESUMEN

Takotsubo syndrome (TTS), recognized as stress's cardiomyopathy, or as left ventricular apical balloon syndrome in recent years, is a rare pathology, described for the first time by Japanese researchers in 1990. TTS is characterized by an interindividual heterogeneity in onset and progression, and by strong predominance in postmenopausal women. The clear causes of these TTS features are uncertain, given the limited understanding of this intriguing syndrome until now. However, the increasing frequency of TTS cases in recent years, and particularly correlated to the SARS-CoV-2 pandemic, leads us to the imperative necessity both of a complete knowledge of TTS pathophysiology for identifying biomarkers facilitating its management, and of targets for specific and effective treatments. The suspect of a genetic basis in TTS pathogenesis has been evidenced. Accordingly, familial forms of TTS have been described. However, a systematic and comprehensive characterization of the genetic or epigenetic factors significantly associated with TTS is lacking. Thus, we here conducted a systematic review of the literature before June 2021, to contribute to the identification of potential genetic and epigenetic factors associated with TTS. Interesting data were evidenced, but few in number and with diverse limitations. Consequently, we concluded that further work is needed to address the gaps discussed, and clear evidence may arrive by using multi-omics investigations.


Asunto(s)
COVID-19/complicaciones , Epigénesis Genética/inmunología , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Cardiomiopatía de Takotsubo/genética , Biomarcadores/análisis , COVID-19/inmunología , COVID-19/virología , Variaciones en el Número de Copia de ADN/inmunología , Sitios Genéticos/inmunología , Ventrículos Cardíacos/inmunología , Ventrículos Cardíacos/patología , Humanos , Anamnesis , Polimorfismo de Nucleótido Simple/inmunología , SARS-CoV-2/inmunología , Cardiomiopatía de Takotsubo/diagnóstico , Cardiomiopatía de Takotsubo/inmunología , Cardiomiopatía de Takotsubo/patología
7.
Genes (Basel) ; 12(6)2021 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067482

RESUMEN

BACKGROUND: Arrhythmogenic Cardiomyopathy (ACM) is a disease of the cardiac muscle, characterized by frequent ventricular arrhythmias and functional/ structural abnormalities, mainly of the right ventricle. To date, 20 different genes have been associated with ACM and the majority of them encode for desmosomal proteins. In this study, we describe the characterization of two novel variants in MHY7 gene, segregating in two ACM families. MYH7 encodes for myosin heavy chain ß (MHC-ß) isoform, involved in cardiac muscle contractility. METHOD AND RESULTS: In family A, the autopsy revealed ACM with biventricular involvement in both the proband and his father. In family B, the proband had been diagnosed as affected by ACM and implanted with implantable cardioverter defibrillator (ICD), due to ECG evidence of monomorphic ventricular tachycardia after syncope. After clinical evaluation, a molecular diagnosis was performed using a NGS custom panel. The two novel variants identified predicted damaging, located in a highly conserved domain: c. 2630T>C is not described while c.2609G>A has a frequency of 0.00000398. In silico analyses evaluated the docking characteristics between proteins using the Haddock2.2 webserver. CONCLUSIONS: Our results reveal two variants in sarcomeric genes to be the molecular cause of ACM, further increasing the genetic heterogeneity of the disease; in fact, sarcomeric variants are usually associated with HCM phenotype. Studies on the role of sarcomere genes in the pathogenesis of ACM are surely recommended in those ACM patients negative for desmosomal mutation screening.


Asunto(s)
Arritmias Cardíacas/genética , Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/genética , Cadenas Pesadas de Miosina/genética , Adolescente , Adulto , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/patología , Cardiomiopatía Hipertrófica/etiología , Cardiomiopatía Hipertrófica/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje
8.
Clin Chim Acta ; 501: 154-164, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31730815

RESUMEN

BACKGROUND: Marfan Syndrome (MFS) is a chronic, life-threatening, autosomal dominant connective tissue disorder caused by mutations in the FBN1 gene, coding for fibrillin-1. All organ systems may be affected, but particularly the cardiovascular system, eyes, and skeleton. Mortality generally results from cardiovascular complications, mainly aortic dissection. Currently, the diagnosis of MFS is based on the revised Ghent nosology. Molecular analysis of the FBN1 gene reduces diagnostic uncertainty in patients with suspected MFS or MFS-related disorders (MFS-RD). To date, more than 2700 FBN1 mutations are known. METHODS: Using Next Generation Sequencing (NGS) followed by Multiplex Ligation-dependent Probe Amplification on NGS-negative samples, we screened FBN1 gene on 124 unrelated patients (101 MFS fulfilling revised Ghent criteria, 20 suspected MFS, 3 MFS-RD) enrolled from 2008 to 2018 at the Multidisciplinary Marfan Clinic, Tor Vergata Hospital, Rome. RESULTS: An FBN1 variant was identified in 107/124 (86.3%) patients, including 48 novel variants (46 pathogenic/likely pathogenic, 2 VUS). A pathogenic/likely pathogenic variant was detected in 90/101 (89.1%) MFS patients. Our approach allowed early diagnosis for 10 young patients (age 3-19 years) with suspected MFS. CONCLUSIONS: This study broadens the mutation spectrum of FBN1, providing a full update of the molecular basis of MFS in Italy.


Asunto(s)
Análisis Mutacional de ADN , Fibrilina-1/genética , Síndrome de Marfan/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Italia , Masculino , Persona de Mediana Edad , Mutación , Adulto Joven
10.
Front Immunol ; 10: 316, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031743

RESUMEN

Background: Primary Immunodeficiencies (PIDs) are a heterogeneous group of genetic immune disorders. While some PIDs can manifest with more than one phenotype, signs, and symptoms of various PIDs overlap considerably. Recently, novel defects in immune-related genes and additional variants in previously reported genes responsible for PIDs have been successfully identified by Next Generation Sequencing (NGS), allowing the recognition of a broad spectrum of disorders. Objective: To evaluate the strength and weakness of targeted NGS sequencing using custom-made Ion Torrent and Haloplex (Agilent) panels for diagnostics and research purposes. Methods: Five different panels including known and candidate genes were used to screen 105 patients with distinct PID features divided in three main PID categories: T cell defects, Humoral defects and Other PIDs. The Ion Torrent sequencing platform was used in 73 patients. Among these, 18 selected patients without a molecular diagnosis and 32 additional patients were analyzed by Haloplex enrichment technology. Results: The complementary use of the two custom-made targeted sequencing approaches allowed the identification of causative variants in 28.6% (n = 30) of patients. Twenty-two out of 73 (34.6%) patients were diagnosed by Ion Torrent. In this group 20 were included in the SCID/CID category. Eight out of 50 (16%) patients were diagnosed by Haloplex workflow. Ion Torrent method was highly successful for those cases with well-defined phenotypes for immunological and clinical presentation. The Haloplex approach was able to diagnose 4 SCID/CID patients and 4 additional patients with complex and extended phenotypes, embracing all three PID categories in which this approach was more efficient. Both technologies showed good gene coverage. Conclusions: NGS technology represents a powerful approach in the complex field of rare disorders but its different application should be weighted. A relatively small NGS target panel can be successfully applied for a robust diagnostic suspicion, while when the spectrum of clinical phenotypes overlaps more than one PID an in-depth NGS analysis is required, including also whole exome/genome sequencing to identify the causative gene.


Asunto(s)
Enfermedades de Inmunodeficiencia Primaria/diagnóstico , Enfermedades de Inmunodeficiencia Primaria/genética , Adolescente , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Italia , Masculino , Fenotipo
11.
Mol Genet Genomic Med ; 6(5): 713-721, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30032486

RESUMEN

BACKGROUND: Mutations in the Janus Kinase 3 (JAK3) gene cause an autosomal recessive form of severe combined immunodeficiency (SCID) usually characterized by the absence of both T and NK cells, but preserved numbers of B lymphocytes (T-B+NK-SCID). The detection of larger (>100 bp) genomic duplications or deletions can be more difficult to be detected by PCR-based methods or standard NGS protocols, and a broad range of mutation detection techniques are necessary. METHODS: We report four unrelated Italian patients (two females and two males) with SCID phenotype. Protein expression, functional studies, molecular analysis by standard methods and NGS, and transcripts studies were performed to obtain a definitive diagnosis. RESULTS: Here, we describe four JAK3-deficient patients from four unrelated families. The first patient is homozygous for the known c.1951 C>T mutation causing the amino acidic change p.R651W. The other two patients, originating from the same small Italian town, resulted compound heterozygotes for the same g.15410_16542del deletion and two different novel mutations, g.13319_13321delTTC and c.933T>G (p.F292V), respectively. The fourth patient was compound heterozygous for the novel mutations p.V599G and p.W709R. Defective STAT5 phosphorylation after IL2 or IL15 stimulation corroborated the mutation pathogenicity. Concerning g.15410_16542del mutation, probably due to an unequal homologous recombination between Alu elements of JAK3 gene, microsatellites analysis revealed that both unrelated Pt2 and Pt3 and their carrier family members shared the same haplotype. These data support the hypothesis of a founder effect for the g.15410_16542del mutation that might have inherited in both unrelated families from the same ancient progenitor. CONCLUSION: Different molecular techniques are still required to obtain a definitive diagnosis of AR-SCID particularly in all cases in which a monoallelic mutation is found by standard mutation scanning methods.


Asunto(s)
Secuencia de Bases , Janus Quinasa 3/genética , Mutación Missense , Eliminación de Secuencia , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/genética , Sustitución de Aminoácidos , Femenino , Humanos , Lactante , Recién Nacido , Italia , Janus Quinasa 3/metabolismo , Masculino , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/metabolismo , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/patología
12.
Clin Chim Acta ; 470: 1-7, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28427807

RESUMEN

INTRODUCTION: Myotonia Congenita (MC) is a nondystrophic skeletal muscle disease characterized by muscle stiffness, weakness, delayed skeletal relaxation and hypertrophic muscle. The disease can be inherited as dominant or recessive. More than 130 mutations in CLCN1 gene have been identified. MATERIALS AND METHODS: We analyzed the entire coding region and exon-intron boundaries of the CLCN1 gene in 40 MC patients. Samples already Sanger-sequenced were successively evaluated by Next Generation Sequencing (NGS), on Ion Torrent PGM. Moreover, additional 15 patients were sequenced directly by NGS. RESULTS: NGS allowed us to identify all CLCN1 mutations except those located within exon 3, demonstrating a 96% of sensitivity. Due to primer design, one SNP (exactly rs7794560) also failed to be detected. Our results enlarge the spectrum of CLCN1 mutations and showed a novel approach for molecular analysis of MC.


Asunto(s)
Canales de Cloruro/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Miotonía Congénita/genética , Exones/genética , Frecuencia de los Genes , Humanos , Mutación , Polimorfismo de Nucleótido Simple
13.
Front Immunol ; 8: 1893, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312354

RESUMEN

Monogenic defects in genes related to primary immunodeficiencies can be responsible for inflammatory bowel disease (IBD). Mutations in the X-linked inhibitor of apoptosis (XIAP) gene have been described in several patients suffering from IBD and, in particular, with very early-onset inflammatory bowel disease (VEOIBD) features. We report a VEOIBD child with a novel XIAP gene mutation characterized by a complicated disease course, which is unresponsive to several medical treatment options. A next-generation sequencing was performed and revealed a de novo hemizygous mutation in XIAP gene: c.565T>C p.L189P. After mutation discovery, we investigated the XIAP protein expression and nucleotide-binding oligomerization domain protein 2 (NOD2) signaling by western blotting. Flow-cytometry was used to analyze intracellular protein expression in different cell subsets and T cell apoptosis. We observed reduced protein expression in lymphocytes, granulocytes, monocytes, an Epstein-Barr virus-immortalized B cell line as well as increased apoptosis, and impairment in NOD2 signaling. The child was successfully treated with HLA-haploidentical hemapoietic stem cells transplant, acquired from his mother, after ex vivo elimination of α/ß T cells and CD19 B cells. One year after the transplant, we repeated the analysis to appreciate the changes in his impairments. The recovery of XIAP protein expression, function, and normalization of apoptosis were observed. Our report emphasizes the important role of genetic analysis in the diagnosis of VEOIBD, illustrates the complete immunological and gastrointestinal recovery after transplant, and shows one of the few successful transplant cases of XIAP patients.

15.
Circ J ; 80(4): 938-49, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26960954

RESUMEN

BACKGROUND: Familial hypertrophic cardiomyopathy (HCM) is an autosomal dominant inherited disorder; mutations in at least 20 genes have been associated. Brugada syndrome (BrS) is an autosomal dominant inherited disorder caused by mutations mainly in theSCN5Agene. A new clinical entity that consists of HCM, typical electrical instability of BrS and sudden death (SD), is described. METHODS AND RESULTS: The family was constituted by 7 members, 4 of who presented clinical features of HCM and electrical instability of BrS. The clinical presentation of proband was ventricular fibrillation. All members were clinically evaluated by physical examination, 12-lead electrocardiography, 2-dimensional echocardiography, stress test, electrocardiogram Holter, flecainide test, and electrophysiological study. An integrated linkage analysis and next generation sequencing (NGS) approach was used to identify the causative mutation. Linkage with the α-tropomyosin (TPM1) gene on chromosome 15q22 was identified. The NGS study identified a missense mutation within theTPM1gene (c.574G>A; p.E192K), exactly located in a binding domain with polycystin-2 protein. No other pathogenic mutations were identified. CONCLUSIONS: This is the first report of an association between HCM and BrS, and the first to use a combined approach of linkage and NGS to identify a causative mutation in SD. The present study expands the clinical spectrum of disorders associated with theTPM1gene and may be useful to report novel mechanisms of electrical instability in HCM and BrS.


Asunto(s)
Síndrome de Brugada/genética , Cardiomiopatía Hipertrófica Familiar/genética , Cromosomas Humanos Par 15/genética , Ligamiento Genético , Tropomiosina/genética , Adulto , Síndrome de Brugada/fisiopatología , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Electrocardiografía , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Canal de Sodio Activado por Voltaje NAV1.5/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...